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Al~tract--In this paper we propose a model which predicts the point at which particles are first ejected 
from the viscous sublayer of a fluid flowing over a settled layer of particles into the turbulent core. 
The model, which combines viscous resuspension observations and an understanding of the structure of 
near-wall turbulence, is expected to be valid only for fine particles where the particle Reynolds number 
(based on the particle diameter and friction velocity) at resuspension is small. If a settled bed with fluid 
on top is sheared in a plane Couette device with the bottom plate fixed at low Reynolds nunber (based 
on the velocity of the top plate and the width of the gap), it has been shown that the shear-induced effective 
particle diffusivity arising from particle interactions causes the bed to expand. This expansion occurs in 
a narrow transition region between the settled bed and a region devoid of particles. If this region is thin 
with respect to the dimensions of the viscous sublayer of the flow, then the turbulent shear stress variations 
in the near-wall region will be impressed on the resuspending layer. Turbulent resuspension would be 
expected to occur by this mechanism when the bed has expanded enough that the upward velocity at some 
point in the resuspending layer caused by the turbulent eddies is greater than the downward settling due 
to gravity. By formulating the problem in this manner, the contribution of viscous effects to the onset 
of turbulent resuspension may be predicted from known quantities. 

The dimensionless steady-state concentration profile caused by the interaction between viscous 
resuspension and turbulent eddies is found to be characterized by the parameter 
S = fl+[(9/2)$]2(9/2$)2(Re~); where fl+ is the dimensionless magnitude of the vertical velocity of the 
eddies, measured previously to be fl ÷ = 0.005; ~b is the Shields parameter z/Apga, where z is the wall shear 
stress, Ap is the density difference between the particles and the fluid, g is the gravitational acceleration 
and a is the particle radius; and Re~- is the particle Reynolds number u*dp/v, where u* = (zip)l/2 is the 
friction velocity, dp is the particle diameter, v is the kinematic viscosity and p is the fluid density. The point 
at which the model predicts incipient turbulent resuspension to occur is given by S ~ 5. This point is shown 
to lie between the Shields criterion for the onset of first motion in a settled layer and the minimum flow 
condition for complete resuspension of a settled layer, suggesting that viscous effects do play an important 
role in incipient turbulent resuspension at low particle Reynolds numbers. 
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1. I N T R O D U C T I O N  

The resuspension and transport of sediments through pipelines and flumes is a fundamental 
problem in engineering. Perhaps the simplest example of sediment transport is the gravity-driven 
transport of a sedimenting slurry through an open channel, as depicted in figure 1. In this problem 
particles are convected along the channel by the fluid flow and, since they are negatively buoyant, 
tend to settle out. At steady state this sedimentation is balanced by some dispersive mechanism 
which acts to keep the particles in suspension. The balance between sedimentation and dispersion 
results in a concentration distribution which, in concert with the fluid velocity profile, determines 
the rate of sediment transport. 

In order to predict this rate it is necessary to model the dispersive process which keeps the 
particles in suspension. The simplest model for this dispersion in the Prandtl mixing-length model, 
in which the particle dispersion is assumed to be the result of turbulent eddies carrying the particles 
a c r o s s  t i m e - a v e r a g e d  s t r e a m l i n e s .  I f  we c o n f i n e  o u r  a t t e n t i o n  to  t h e  r e g i o n  o f  t he  f low in  w h i c h  

t h e  s h e a r  s t ress  is a p p r o x i m a t e l y  c o n s t a n t  (e.g. f a r  f r o m  the  u p p e r  f ree  su r f ace )  a n d  m a k e  t he  

c o n v e n t i o n a l  a s s u m p t i o n  t h a t  t he  l e n g t h  sca le  o f  t h e  m i x i n g  is p r o p o r t i o n a l  to  t h e  d i s t a n c e  f r o m  

t h e  wa l l  o f  t h e  c h a n n e l ,  t h e n  t he  d i s p e r s i o n  coef f ic ien t  is g i v e n  b y  

D t =  (xsY)2 d y  ' [ l]  
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Figure 1. Concentration profile in the turbulent core of the flow obtained from a balance of the Stokes 
sedimentation flux and the dispersion due to Prandtl mixing. 

where D t is the turbulent density eddy diffusivity, Xs is the Prandtl mixing-length constant, y is the 
distance from the wall and fx is the time-averaged velocity. Again following the mixing-length 
arguments for momentum transport, the velocity gradient in the turbulent core is given by 

dfx 1 
~-y = u ,  Xsy [21 

where u ,  = (%/p)~/2 is the friction velocity, ~0 is the wall shear stress and p is the fluid density. 
At steady state in the turbulent core of the flow, we have a balance between this dispersive flux 

and the sedimentation flux: 

dO 
- - -  = 0 ,  [31 N,. = -Usfq~ U*XsY dy 

where us is the Stokes settling velocity, f is the hindered settling factor and ~b is the concentration. 
For dilute systems the hindered settling factor is unity, thus [3] may be integrated to obtain the 
well-known power-law concentration profile (Yalin 1972): 

~b -- q~0(Y'] - ~+/~s"* [4] 
\Y0/ 

Considering the simplicity of the model for particle dispersion, [4] describes the experimentally 
observed concentration profile in the turbulent core surprisingly well, as may be seen from 
figure 2. 

A significant drawback to this model is that there is no way to predict the entire concentration 
profile a priori from the boundary conditions at the wall. This difficulty arises because the "mixing 
length", and hence the particle dispersion coefficient, vanishes at the wall. As a consequence, the 
concentration profile given in [4] must be fixed at some value 40 at an arbitrarily chosen "reference 
level" y0--the so-called reference level problem (McTigue 1983). This difficulty is not at all 
surprising, since the physics of particle transport in the viscous sublayer of the flow differ from 
that governing transport in the turbulent core. For the case of the diffusion of molecules away from 
the wall there is little difficulty, since at some distance from the wall molecular diffusion becomes 
comparable to convective transport. Whether the convection is described by the simple model 
above, or by a more sophisticated model which includes the structure of near-wall turbulence, such 
as that developed by Campbell & Hanratty (1983), the balance between convection and diffusion 
provides a bridge from the diffusive viscous sublayer at the wall and the convection in the turbulent 
core. For particulate flows, however, molecular diffusion is negligible and some other mechanism 
must be found to disperse particles in the viscous sublayer. 

Mechanisms which have been proposed for this dispersion include inertial lift, in which the 
inertia of the fluid flowing over the particles attached to the surface exerts an inertial lift balancing 
the sedimentation due to gravity, and turbulent microbursts, which penetrate to the wall to within 
1 particle diameter (Thomas 1961). The reference level problem can be avoided entirely using a 
Lagrangian description for the case of large Stokes number flows, in which the inertia of the 
particles carries them entirely through the viscous sublayer. While these mechanisms will dominate 
resuspension processes at moderate and high particle Reynolds numbers Re + (a Reynolds number 
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Figure 2. Comparison of the predicted power-law concentration profile (Yalin 1972) and measured 
concentrations in an open channel flow. [From McTigue (1983).] 

based on the friction velocity and the particle diameter), they are unlikely to be significant at 
lower Reynolds numbers. Indeed, Yung et al. (1989) recently showed that turbulent microbursts 
were unable to entrain particles into the mean flow over the experimentally studied range 
0.5 < Re~- < 1.3. Here we propose a new mechanism by which the ejection of particles from the 
viscous sublayer is predicted to occur under conditions when the particle Reynolds number is small 
and inertial effects are negligible. 

When a settled bed of particles is sheared by turbulent flow of fluid, the surface of  the bed is 
subjected to a mean stress due to the time-averaged bulk flow as well as spatially and temporally 
fluctuating wall shear stresses (Finnicum & Hanrat ty 1985). The magnitude of the fluctuating 
components is small compared to the mean wall shear stress. The first motion of  the settled bed 
occurs when the Shields parameter (based on the mean shear stress) is greater than some critical 
value. The dependence of  this critical Shields parameter on the Reynolds number of  the flow (based 
on friction velocity and particle diameter) is referred to as the Shields diagram (Mantz 1977; Yalin 
& Karahan 1979). The first motion of the settled bed is characterized by a rolling or tumbling 
motion of  particles on the surface of  the bed. 

At much higher values of the Shields parameter, the settled bed is found to resuspend even under 
viscous conditions (Gadala-Maria 1979; Leighton & Acrivos 1986). Thus, even if the particle 
Reynolds number is small, the mean shear stress causes the bed to expand in the viscous sublayer 
of  the flow. If  this bed expansion is combined with the convective motion induced by the spatial 
fluctuations of  the shear stresses imposed on the viscous sublayer, then it is possible that the upward 
vertical velocity in some region within the resuspended layer may exceed the downward settling 
due to gravity, thus causing an ejection of the particles into the turbulent core of  the flow. In this 
paper we propose this new mechanism for turbulent resuspension, which involves the viscous 
mechanism of  shear-induced migration. 

The model presented here is intended solely to determine the conditions under which the viscous 
mechanism of  shear-induced migration significantly influences the turbulent resuspension process. 
As a consequence of  the limitations of the model, we are not attempting to predict the point at 
which the first sediment motion occurs, or the actual sediment transport rate. Rather, we predict 
the point at which particles are first ejected from the viscous sublayer into the turbulent core of 
the flow. This should correspond to an abrupt increase in the rate of sediment transport as particles 
are entrained in high-velocity regions. 

In the next section we briefly describe the shear-induced migration process, which has been 
identified to result in the resuspension of  a settled layer of  particles under purely viscous flow 
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conditions. In section 3 we combine this shear-induced migration mechanism with a simple 
model of near-wall turbulence and derive the general mass-balance equation which models the 
resuspension phenomenon in the viscous sublayer at low Reynolds number. In section 4 we 
solve a linear approximation to this model, which provides us with insight into the behavior 
of the resuspending layer and which is useful in its own right for the corresponding problem 
of the mass transfer of molecular species in the presence of an externally applied force field. 
In section 5 we develop and solve the full nonlinear convection~liffusion model of a 
resuspended particle layer with moving boundaries. In the final section, we will compare the 
predictions made by this new model with previous experimental results and with inertial lift 
mechanisms. 

2. VISCOUS RESUSPENSION 

Gadala-Maria (1979) observed that when a coal oil slurry in a parallel-plate viscometer was 
sheared after being allowed to rest overnight, the torque signal initially measured by the viscometer 
was quite small. Over a short period of time, however, it increased to the steady-state values 
observed the previous day. He was able to quantitatively account for this increase in the torque 
signal by the resuspension of coal particles which, during the period of rest, had formed a settled 
layer. This resuspension process was not associated with turbulence, since the Reynolds number 
based on the gap width was on the order of 10 -2 or smaller. 

The phenomenon was investigated more completely by Leighton & Acrivos (1986, 1987), 
who demonstrated that the viscous resuspension of the settled particles could be accounted for 
by an effective diffusivity which was proportional to the shear rate and the square of the 
particle radius. Because of the observed dimensional scaling, the effective diffusivity was 
attributed to the interactions which occurred between particles as a suspension was sheared, and 
thus the term shear-induced effective diffusion was used to describe the phenomenon. The 
magnitude of the shear-induced effective diffusivity was measured in a distinct experimental 
geometry to be a strong function of concentration which vanished as the concentration approached 
zero (Leighton & Acrivos 1987). The effective diffusivity for suspensions of several types of particles 
has subsequently been measured with greater accuracy by Chapman & Leighton (1991), who 
found that while the diffusivity varied between suspensions at the same concentration in much the 
same manner as the suspension viscosity, the correlation proposed by Leighton & Acrivos (1986) 
provided a reasonable description of the data: 

D = ~a2/L), [5] 

where/)  is given by 

/5 = ~2(1 + ½ e8'S~). [6] 

A plot of the effective diffusivity as a function of concentration is given in figure 3. 

3. NEAR-WALL TURBULENCE 

The viscous resuspension phenomenon described above immediately suggests a possible way by 
which incipient turbulent resuspension at low particle Reynolds numbers may occur. Even though 
the Reynolds number of a flow may be large based on the length scale of a pipe or channel, 
in the vicinity of the wall the particle Reynolds number (Re~- = u.pdp//~, where dp is the particle 
diameter and # is the viscosity) may be quite small. Under such circumstances it seems reasonable 
that, due to the large applied shear stresses in the near-wall region of a turbulent flow, the 
interaction between particles in this shear flow should give rise to the same type of viscous 
shear-induced effective diffusivity as was observed in the viscous resuspension experiments. This 
suggests that in the vicinity of the wall the shear stress and the resulting shear-induced migration 
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Figure 3. Plot of the measured effective shear-induced diffusivity in concentrated suspensions by Leighton 
& Acrivos (1985) (+, x, - )  and Chapman & Leighton (1991) (O, A, Iq): O, ll5/am glass spheres; 
A, 46/zm polystyrene spheres; I--1, 47#m glass spheres; +, 46#m polystyrene spheres; x, 86/~m 

polystyrene spheres; - - ,  diffusivity correlation. 

due to the interaction between particles would cause a settled bed of  particles to expand. This 
expansion would then permit particles to escape the viscous sublayer and be swept out by the 
turbulent eddies into the turbulent core. 

In order to develop the qualitative idea described above into a quantitative model of 
turbulent resuspension, we must first examine the detailed structure of  the turbulence in the 
viscous sublayer. For the purposes of  our model, we shall assume that the structure of  the 
near-wall turbulence over a settled bed is the same as that over a smooth wall. This is likely to 
be true only if the particle diameter is small relative to the viscous length scale v/ (z /p)  ~/2, where 
v is the kinematic viscosity. This is equivalent to requiring that the particle Reynolds number based 
on the friction velocity be small. For  uniform flow over a plane, Finnicum & Hanrat ty (1985) 
demonstrated that the dominant features of  the turbulence in the viscous sublayer leading to 
vertical convective mass transfer are counter-rotating eddies with vorticity axes aligned with the 
main flow. 

We apply this picture of  near-wall turbulence to our viscous resuspension model with the 
assumption that the turbulent shear stress, which gives rise to these counter-rotating eddies, is 
impressed on the resuspending particle layer. The influence of the particles on the turbulent stresses 
is ignored since, as shall be demonstrated, the thickness of  the resuspending layer is very thin with 
respect to the size of  the turbulent eddies. The stresses are thus imposed on this resuspending layer 
in the same manner as on any mass transfer boundary layer. 

The turbulent shear stresses are a perturbation on the time-averaged wall shear stress 30 = (zyz) 
as follows: 

zyz(x, z, t) = Zo + z'y~(x, z, t) [71 

and 

Zyx(X, z, t) = z'yz(x, z, t). [81 

The flow geometry is depicted in figure 4. The shear stresses zyz and Zyx in [7] and [8] are obtained 
as the first term of  a Taylor series expansion with respect to the distance y from the wall and hence 
are valid in the limit as y ~0 .  
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Figure 4. Counter-rotating eddy structure in the near-wall region due to fluctuating turbulent shear stresses 

imposed on the viscous sublayer. 

The flow field in the resuspended layer is obtained by solving the shear stress and continuity 
equations in a thin resuspended layer of particles near the fully packed layer: 

~uz 
72YZ : ]'~ Oy' [9] 

OUx 
Tyx = # Oy [10] 

and 

Ou x OUy Ou~ 
Ox -t- '~-y + -~-z --= 0' [111 

where # will be a function of the concentration distribution and hence of both position and time. 
Equations [9]-[11] can be rewritten in terms of the relative viscosity #r = M#0 (where #0 is the 
viscosity of the suspending fluid) and integrated to yield equations for the velocity field in the 
resuspended layer: 

~'x(x, z, t) fY 1 dy, 
u~ - [ 1 2 1  

• /go J - o ~  # r ( X ,  y ,  z ,  t) 

and 

(~o + ~;(x, z, t)) I y 1 u~ = - -  - [13] 
#o J o~#r(X,Y,Z,t) dy 

uy = -- j _  ~ \ t?x + ~ )dY" [141 

Since the relative viscosity o f  a fully settled layer is infinite, only those regions over which the 
concentra t ion is less than that  at maximum packing will contr ibute  to the velocity field. In the case 
o f  a settled bed with clear fluid above (i.e. #r = 1), the equations can be solved for the flow field 
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in the vicinity of  a wall in terms of  the shear rates sx = Z'yx/~ and st = ~ t / ~  and S~ = %/#0 along 
the x- and z-directions as follows: 

and 

where fl is given by 

Ux = Sx(X, z, t)y,  [15] 

ut = (S= + st(x, z, t))y [16] 

uy = ~y2, [17] 

l(< 
fl(x, z, t) = - - 2  \ Ox + c3z,]" [181 

Finnicum & Hanratty (1985) have measured the vertical velocity fluctuations in the vicinity 
of  the wall and have reported a mean square value fl+ = v2(flz)~/E/u 3 = 0.005 for the dominant 
eddies. The vertical velocity due to fluctuating shear stress in the z-direction has been shown to 
contribute only 5% to the measured value of  fl, which agrees with the scaling arguments of  
Campbell & Hanratty (1983). Hence, the dominant contribution to the vertical motion is a result 
of  turbulent fluctuations transverse to the main time-averaged flow in the z-direction. We therefore 
approximate the three-dimensional turbulent flow by a two-dimensional velocity field (ux, uy) and 
neglect any variation in the direction of  the main flow. This geometry is depicted in figure 4. 
Following Finnicum & Hanratty (1985), we assume the counter-rotating turbulent eddies transverse 
to the direction of  flow to be characterized by a width 2 and an amplitude ~: 

2r~x 
Sx = ~(t)sin 2 " [19] 

From the continuity equation [18], ~, fl and 2 are related to each other by 

fl 2 \ 2 /" [20] 

The flow field due to the counter-rotating eddies for the case of a resuspended layer of  particles 
is formulated in terms of  the velocity components u and v in the x- and y-directions, respectively: 

and 

Y 1 2nx I - - d y '  
u = ~ s in - -~ -d_~  #, 

Ou 2n~ 

3x 2 
2nx f y 1 - - c o s - ~  _ ~ d y ' - c t  

2~x fY 1 d/ara~b 
sin - - ~  O _ . / ~  ~ ~x dy'  

[21] 

[22] 

- -  - -  cos - - ~  1 dy" dy'  + ~ sin 2nx v = 2 /z, T -2 ~-~ dy" dy'.  [23] . . . .  J-~c/~r q~ 0X 

Combining the convective flux, arising as a result of  the eddy motion, with the transport fluxes, 
due to sedimentation and shear-induced diffusion, we obtain the equations for total particle flux 
in the x-  and y-directions: 

Nx = uq~ [24] 

a n d  

= v 0  - D - u d 0 ,  [25] 

where u, is the Stokes settling velocity in an unbounded stagnant fluid, f is the hindered settling 
factor and D is the concentration-dependent shear-induced diffusion coefficient. Hunt  (1954) has 
suggested that the sedimentation velocity be modified by the induced upward velocity of the 
suspending fluid due to the downward motion of the particles. While this correction is likely to 
IJMF 20/3--M 
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become important in highly concentrated polydisperse suspensions as ~b ~ 1, it is always bounded 
by the finite maximum packing fraction for the monodisperse suspensions considered here. In any 
event, this effect can be absorbed into the hindered settling function f.  

The flux relations can be used to obtain the transient mass-conservation equations for the 
particles in the resuspended layer: 

- V.N 
~t 

= - U ~ x - V - f f f y  D + (u J4)), [261 

where we have neglected diffusion in the x-direction relative to convection and all variations in 
the z-direction. 

4. MASS T R A N S F E R  IN S E D I M E N T I N G  SYSTEMS 

While [26] could, in principle, be solved numerically for the time-dependent evolution of the 
concentration profile, it is instructive to first consider a simpler limiting form. We shall examine 
the case when the diffusion coefficient D is constant, the hindered settling f ac to r f i s  unity and the 
boundaries do not move as a result of erosion/deposition of particles at the wall. Further, let us 
assume that sufficient time has elapsed for the concentration profiles to reach a steady state. 
The resulting problem is thus that of mass transfer of  a sedimenting species undergoing molecular 
diffusion in the limit when the concentration is infinitely dilute. The steady-state mass-balance 
equation reduces to the simple convection~liffusion problem: 

2nx aq5 rt~ 2 2nx a~b - a2~ a~ 
~fs in  ~ -  c~ x -  ~ y  c o s t l y  + / 3 ~ + u s ~ y "  [27] 

We impose the boundary conditions for ~b = 4)0 at the wall y = 0 and q~ ~bo~ as y ~oo .  Because 
we have neglected diffusion in the x-direction, [27] involves only first-order derivatives in x. We 
thus must provide an initial condition in the downwelling region x = 0. This initial condition 
is obtained by substituting x = 0 in [27] and solving the resulting equation (now solely a function 
of y)  for the initial concentration profile. As we shall demonstrate presently, the concentration 
distribution is independent of x for x/2 ,~ 1, in the same manner as mass transfer is in stagnation 
flow. 

It is useful at this point to render the equations dimensionless. We define 4)* =(4,-~bo~)/  
(4, 0 - ~b~ ) and x* = x/(2/27r), so that the dimensionless width of a single eddy (one half of the pair) 
is equal to re. The scaling for y involves a choice among two length scales. The first length scale 
Lc = (D/2fl) ~/3 is obtained by balancing the diffusion and vertical convection terms in [27], while 
the second length scale Ls = D/us is obtained by balancing the diffusion and sedimentation terms. 
We choose the latter scaling, thus y * =  y/Ls = yus/D and 

• , ~a~b* / y,2T ) ~3~b* , 02~ *ay 
Sy* sm x -- ~S cos x* + 1_ -+ ,2 '  [28] 

Note that the dimensionless differential equation is a function of the single dimensionless 
parameter S = (Ls/L¢) 3, which is the ratio of convection to sedimentation. The boundary conditions 
for the concentration are transformed to q~* = 1 at the wall y* = 0 and q~*~0 as y * ~ o o .  The 
quantity of  primary interest is the average mass transfer rate <Ny > from the wall. This is defined 
in terms of the concentration distribution by 

<Ny) = ~ ,)0 - -D - q~0us dx. [29] 
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We render the mass flux (Ny)  into dimensionless form by scaling it with the sedimentation flux 

u~(ri0  - r i ~ ) :  

<U,.>* - us(rio- r i~ ) -  --~ ~y,  aX - 1 - . [ 3 0 ]  

L l- oj 
In [30], for the dimensionless flux, we note that since the concentration profile ri * is independent 

of riot, we can represent (Ny)* in terms of the first term in parentheses on the right-hand side of 
the equation, the value of which remains unchanged for all values of ri~, minus the second term 
which involves the parameter ri~/ri0. We define a dimensionless flux (Nyo)* as equal to (Ny)* 
when ri~ = 0 and solve for the dimensionless flux for all values of ri~ in terms of (Nyo)* by 

r i o  
(Ny)* = (Nyo)* rim" [31] 

1 - - - -  

r i o  

The dimensional flux from the wall can now be simply expressed as the upward flux due to 
diffusion [proportional to the driving force term (r io-  ri~)] minus the flux of particles due to 
downward settling, which is impressed on the boundary layer from infinity: 

(Nv) = (Ny0)*u,(ri0 - ri~) - u, ri~. [32] 

The concentration profile at x* = 0 is obtained by substituting x* = 0 in [28] and solving the 
linear ordinary differential equation for ri(0, y*), to yield: 

• expL-- ~S --6 + [33] 
ri(O, y*) = ~  

J0 
It is convenient to obtain the solution to [28] by making the substitution ri*(x*,y*)= 

ri*(0, y * ) +  ri'(x*, y*), where ri' represents the deviation in the concentration distribution from 
the analytic result at x* = 0. Equation [28] is transformed by this new choice of the dependent 
variable, to yield: 

Sy* sinx* O-~Ori' / y,2 )drip' O2ri'., * 1)Ori*(0'Y*)oy* = ~S--~--cosx* + l _ ~ y . + O y . 2 + t c o s x  - [34] 

Equation [34] is an inhomogeneous equation due to a forcing term which arises from the known 
function 4) (0, y*), but with homogeneous boundary conditions ri' = 0 at y* = 0 and y* ~ ~ .  

We note that the general solution to [34] is a sum of the solution to the homogeneous part of 
the equation and any particular solution to the problem. The homogeneous equation possesses a 
regular singular point at x* = 0 and hence admits a solution which, in general, is not analytic at 
the origin. It is simple to demonstrate, however that [34] possesses a unique solution which is 
analytic at the origin, and for which Ori'/Ox*= 0 at x * =  0. 

Equation [34] is solved numerically by integrating in the x*-direction from x* -- 0 up to x* = n. 
The Laplacian operator O2ri,/0y,2 is approximated by the three-point central-difference formula 
and the resulting set of coupled ordinary differential equations are integrated by the 
Crank-Nicholson implicit scheme to ensure stability. The boundary condition ri' = 0 as y* ~ 
is implemented numerically, by solving a sequence of problems with ri' = 0 at some chosen value 
y * =  L, until convergence in the integrated flux is obtained with increasing values of L,.  The 
integration of the concentration profile is performed up to (n - E), where E is typically 10 -4. This 
is required, since the convective velocity u is equal to zero at x* = n and hence Ori'(x*,y*)/Ox* 
is not defined at this point. The concentration profile ri(n, y*) may be obtained analytically by 
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Figure 5. Plot of the concentration contours within the counter-rotating eddies from q~* = 0.1 up to 
4~* = 0.9. Note the concentration is nearly independent of x* in the downflow region up to x* = ~/2. In 
the upflow region, the net mass flux far away from the wall is convected away from a narrow plume 

centered about  x* = n. 

substituting x * =  rr in [28] and solving the resulting equation in y*: 
I L. / y*3  

,. expOS--6--- y * )  dy* [35] 
q~*(Tz, y*)----- ~L. / y , 3  

J0 e x p O S e - - - y * )  dy* 

It is interesting to examine the solution of [34] in the region x* = rc - E. From the analytic 
solution given in [35], we find that the dimensionless concentration at x* = rc is unity everywhere 
except in a small region near y * = L,,  where we have a sharp concentration gradient to match the 
imposed condition q~ * = 0 at y* = L,. If  we examine the total flux (Ny)* across some plane which 
is well above the resuspending layer but well below y* = L,,  we find that particles are ejected from 
the resuspending layer in a narrow plume centered about x* = r~. The width of this plume is a 
function of y* and, from a mass balance, is given approximately by 2n(Ny)*/Sy*:. It is also 
interesting to note that the maximum rate of bed erosion occurs in the center of the downwelling 
region x * =  0 and maximum deposition occurs at x * =  n. The concentration contour plot for 
various values of ~b* is depicted in figure 5. 

The results of the numerical simulation are summarized in figure 6, where we plot the average 
flux (Ny)* as a function of S 1/3 for various values of the parameter ~b~/q~ 0. The diffusive flux 
vanishes for small S, followed by a transition region. For large values of S, the dimensionless flux 
asymptotically approaches the line given by (Ny)* = 0.46029S ~/3 _ ~bo~/q~0/(1 - q~o~/~b0). This is the 
scaling expected for (Ny)* if gravity plays no role in the erosion process. 

5. TURBULENT RESUSPENSION 

In order to solve the full resuspension model given by [26], we must obtain the constitutive 
equations for the effective diffusivity D, the hindered settling factor f and the relative viscosity #r 
as functions of the particle volume fraction ~b. We shall assume the effective diffusivity to be given 
by [5] and the relative viscosity correlation reported by Leighton & Acrivos (1987) for suspensions 
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Figure 6. Plot of the dimensionless flux from the wall as a function of the dimensionless parameter S ~/3 
for $~ = 0, 0.15, and 0.25 for the case of mass transfer in sedimenting systems. 

of  polystyrene spheres: 

= 1 + [361 

/~0 1 -  

where [r/] = 3.0 and Sm -- 0.58. We shall also take the hindered settling f a c t o r f t o  be given by the 
Richardson-Zaki correlation: 

f = (1 - 4)  5.' . [37] 

The convective velocity terms u and v, given by [21] and [23] respectively, are substituted in the 
mass-conservation equation [26]. The shear-induced diffusion coefficient D, given by [5], is rewritten 
by replacing the shear rate ~ by Zo/(#o#r). The resulting expression for D is substituted in [26] to 
obtain the nonlinear convection-diffusion model: 

Ot ct sin T dy '  - ~ 7x  + cos 2 

fY fY' 1 ,, . 27zxfY fY' 1 dl~r )~y x #r dy dy '  - • sin - f -  dy" dy '  . 
-~  -o~ . . . .  #~d~ 

"~- --'~y]d o ~lAr Oy } "[- Us - - 0 y  [381 

Equation [38] is rendered dimensionless by defining x * =  x/(2/2~), y* =y/Ls and t * =  t/to, 
where Ls and to remain to be determined. The characteristic length scale Ls in the y-direction is 
chosen to balance the shear-induced diffusion and sedimentation terms in [38] and hence becomes 
equal to za2/us#o . This scaling for y is similar to the viscous resuspension length scale obtained 
by Leighton & Acrivos (1986) in the study of  viscous resuspension. Substituting Stokes law for us 
we find Ls = (9/2)~0a, where $ is the Shields parameter (the ratio of viscous to buoyancy forces) 
• /Apga. We also note that since za2/go is the dimensional scaling of  the shear-induced diffusion 
coeffÉcient, the length scale L, is proportional to that used in the linearized problem examined in 
the previous section. The steady concentration profile will be attained over the time for particles 
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to diffuse over the length scale L~, thus we choose to = L~/[za2/#o] = ra2/l~o#~. In dimensionless 
form, [38] thus becomes 

c~t* S sin x* dy '  0q) 
\ , d  '~ ~ X  * 

(f"fy f,* f 1 d,r + S cos x* 1 dy" dy '  - sin x* 
. . . . . .  It . . . . . . .  laZ dc~ Ox * dy" dy '  ~y* 

+ - -  -~ [39] 
Oy * ~y* ~y * 

As in the linearized case, [39] depends upon a single parameter  S defined here as 2~L~#o/Toa 2. 
We can represent the parameter  S in terms of  the particle Reynolds number by expressing Ls 
in terms of  the Shields parameter  ~k and fl in terms of the dimensionless scaling for vertical 
mot ion/~ +: 

Unlike the linearized problem, in which the lower boundary was assumed to be fixed at y* = 0, 
in the nonlinear formulation the lower boundary will move as the bed erodes in the downwelling 
region and deposits in the upwelling region. In addition, there will be a sharp transition between 
the resuspending layer and the sedimenting suspension above it. In the special case of  pure fluid 
above the resuspending layer, this transition will be a discontinuity in the slope of  the concentration 
profile, because the diffusivity, which smooths out such discontinuities, vanishes as q~ ~ 0 .  As a 
result, [39] is valid only within the resuspended layer of  particles, where the concentrations are in 
the range given by (0 < ~b < ~bm) and additional equations must be developed to account for the 
moving boundaries. 

We account for the movement  of  the boundaries by introducing the additional dimensionless 
variables y~' (x*, t*) and y* (x *, t *), as shown in figure 7, which locate the position of the bot tom 
and top boundaries as a function of  time and position. These new variables are scaled with the 

y* 

X* 

Figure 7. The resuspended layer of particles consists of a bottom settled layer which is essentially flat and 
a top interface. The y* coordinate is transformed to ~/= 0 (the bottom settled layer of particles, where 

~b = ~bm) and r/= 1 (the top edge of the resuspended layer, where ~b = q~). 
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viscous resuspension length scale Ls. The y* coordinate is transformed to another variable q, 
defined in terms of y* and y* as 

y* -y~(x* ,  t*) 
n y*(x*, t* ) -y*(x* ,  t*)" [411 

Hence, the bottom and top boundaries of the resuspended layer are mapped onto q = 0 and 
n = 1, respectively, and the partial derivative terms are transformed from the (x*,y*,t*) 
coordinates to (x*, n, t*) coordinates: 

aq~(x*, y*, t*) --_ aqb(x*, n, t*) -t aq~(x*, n, t*) an(x*, y*, t*) 
ax* ax* an ax* 

adp(x*, y*, t*) Ocb(x*, n, t*) an(x*, y*, t*) 

ay * an ay * 

and 

&.b(x*,y*, t*) 8qb(x*, n, t*) a~b(x*, n, t*) an(x*,y*, t*) 
= ~ , [ 4 2 ]  

at* at* an at* 

where the additional terms involving the derivative of n with respect to x*, y * and t* are obtained 
from [41] to yield 

ay* ( a *  ay*~ 
an at ---~ + n ~t* 8-~ ] 
at* y* - y *  

a~ ax ----~ + \~x* ax*J 
8x* y* - y ~  

and 

at/ 1 
ay* y* - y ~' [431 

In order to determine the concentration profiles in the resuspended layer we shall invoke a 
pseudo-steady-state assumption. We assume that the rate of deposition and erosion is sufficiently 
slow that the concentration profiles within the layer as seen by an observer in the coordinate system 
(x*, n, t*) fixed to the layer are steady. This is equivalent to assuming that the profile acquires some 
steady shape which simply moves with the eroding bed. As a consequence, in the (x*, n, t*) 
coordinate system, a~b/at* = o. This approximation will be reasonable provided that the turbulent 
eddies persist for a sufficiently long period of time for the profiles in the layer to assume a steady 
form. In using [21]-[23] to represent the velocity profile, we have assumed that the sediment layer 
is fiat. Obviously, this initial profile will evolve as the bed erodes. However, the approximation of 
a fiat surface will be reasonable provided that the magnitude of the deformation is small with 
respect to the horizontal width of the eddies. The psuedo-steady-state assumption also implies that 
the top and bottom surfaces are moving at the same velocity (which will be a function of x*) and 
hence the bottom velocity ay~/at*, defined as )* ,  is equal to the top velocity ay*/at*, defined as 
p*. The thickness of the resuspended layer is a function of x* only and we account for this by 
defining another variable y* equal to y* - y*. The mass-balance equation [39] is transformed by 
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[41]--[43] to yield the following equation for the steady motion of a resuspended layer: 

[( ['° """+]) ( .r; ;; y,  a r / = - y * S  sinx* -o~ dr/ ~xx* y*ax*-~-~r/ - c o s x *  o~ ~oldr/"dr/',Ur 

f,7' f:' 1 d#r[a4f) r/ ay* de ldr/,, dr/,) ..~__~r/¢ ] - s i n x * - .  :#~d~b a--~ y*ax*~J 

d y b a2¢ v + [44] 
+ #x,y*~ ar/~ -d-4J \#,J t, y~ ar/ ] y* ar/ " 

The boundaries of the resuspended layer will move at velocities determined by the local flux 
conditions near the fully packed layer at the bottom and the clear fluid interface at the top. 
Since the concentration gradients as ¢--*era at the bottom and as ¢--,0 at the top grow without 
bound, we may approximate the sharp interfaces as a discontinuity in the concentration and flux 
profiles as follows. We choose two small numbers et and eb and apply [44] as the valid mass-balance 
relation in the concentration range ( ¢ m -  eb ~< ¢ ~< et) within the resuspended layer, as shown 
in figure 8. The approximation of a sharp interface as a jump in the concentration and flux 
profiles at the interface is used to obtain the velocity with which the interface moves in response 
to the local concentration and flux discontinuity. Let AB be a small section of the interface between 
any two regions labelled L and U across which we have a discontinuity in the concentration and 
flux. The velocity V with which the interface moves is obtained from a mass balance around the 
dotted envelope shown in figure 8. We note that the interface moves as a result of (N L - N u ) '  r~ 
(the component of net flux jump in the direction normal to the interface) and can be expressed 
a s  

V = [(NL - Nu)" f/]~ 
¢L -- Cu ' [45] 

where N L, N U and eL, CU are the flux vectors and concentrations in the two regions L and U, 
respectively, and # is the unit vector in the direction normal to AB. 

Applying [45] to the bottom boundary and noting that NL = 0 in the fully packed layer and 
Nu = Ny for a fiat surface, the following equation for the movement of the bottom boundary is 
obtained: 

Ot ~bm - - ~  = (~m---"'~ L/A0~r  Oy + UJ¢ *=0re--<b" [46] 

Equation [45] is rendered dimensionless by the previously obtained scaling factors for length and 
time and then y* is transformed to r/ to obtain 

1 [ /) 0 q ~ + f ¢ ]  . [47] 

We similarly apply [45] by substituting for the flux N L in terms of Nx and Ny at an inclined 
interface to determine the dimensionless motion of the top boundary: 

1 

= (, + a r°y 'Tl 
La-~-~j ) 

{ ay, f_ I ( f_ f¢ Idr/. x SY*~x. Sinx* o ~ d r / ' + S y * 2  cosx* o~ -=# dr/' 

f:f: ) 1 d#r a ¢  dr/" dr/' -~ - all ~ s i n  X ~ 
o ~ d ¢ a x *  ¢ ¢o~ ~'rYd - + [ f ( ¢ ) ¢ - f ( ¢ ~ ) ¢ ~ ]  oO 

where aR = 9n$a/2 (the ratio of the two length scales L, and 2/2n) and ¢~ is the concentration 
of particles in the bulk of the fluid far away from the wall. 
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Figure 8. The slope of the concentration profiles, as shown in detail 1, becomes unbounded due to the 
shear-induced diffusivity becoming zero at the bottom settled layer and the top edge of the resuspended 
layer. The convection~liffusion equations are applied in the region ~b® - Et < ~b < ~b m - E b. In detail 2, 
the top (between qS~ and ~b~ -Et) and bottom (between ~b m -E b and q~m) regions are shown modeled as 
discontinuities in concentration and fluxes. A material balance around the dotted envelope will yield the 

velocity at which the interfaces move. 

The model  derived above for the mot ion  o f  the upper  and lower interfaces essentially assumes 
that  there is no resistance for the bed to unpack between ~bma~ and ~bmax- eb or  for the transit ion 
o f  the upper  interface between ~b = Et and ~b = 0. While this is reasonable for the upper  interface, 
it is more  questionable for the settled bed. I f  the bed consists o f  cohesive sediments (such as clay 
particles, for example) then there m a y  be considerable resistance to "breaking loose" the sediment 
f rom the packed layer. Wi thout  detailed knowledge o f  the cohesive forces present, however  (which 
may  vary with the type o f  sediment), the assumpt ion o f  no resistance (e.g. a noncohesive sediment) 
is the chosen way to close the model.  For  our  calculations, Eb and Et were chosen to be 0.02, however, 
the concentra t ion profiles were insensitive to changing these parameters  by a factor  o f  2. 

So far, we have assumed that we have a clear fluid at the top o f  the resuspended particle layer 
in order  to consider the more  complex problem o f  two moving interfaces. However,  in general, we 
may  have a nonzero  concentra t ion o f  particles on the top o f  the resuspended layer and this leads 
us to consider the modified problem when q~--*~boo as y ~ .  We may  note that  as long as ~b~ # 0, 
the slope o f  the concentra t ion profile ddp/Oy* is bounded  at the upper  interface. However ,  for small 
values o f  q~o~ we have a small region at some y*  where we expect a large but bounded  concentra t ion 
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Figure 9. Plot of the initial concentration profile $(x*= 0, rl) for $o~ = 0.2 to 0.05 in the case of the 
nonlinear turbulent resuspension problem. Note the development of a sharp interface at the top for small 

values of $ , .  

gradient O~b/Oy*, due to a small but nonzero q~ at the top, after which the concentration profile 
approaches a flat region where essentially ~b ~ $~.  This is due to the vanishingly small diffusion 
coefficient in this region of large concentration gradients [D~O(~b 2) for small values of ~b]. 
In figure 9 we have plotted the initial concentration profiles at x* = 0 for various values of qS~:. 
The development of a sharp interface is clearly evident when $o~ is less than about 0.1. Also, when 
~b~ ~. 0.05 or less, the region of  large concentration gradient is almost indistinguishable from a 
discontinuity. The region of large concentration gradient disappears when ~b, is approximately 
greater than 0.15 and we observe a smooth transition of  the concentration profile into the bulk 
of the suspension. As a result, we can no longer define an upper boundary for the resuspended 
layer. 

In order to solve the nonlinear problem for all ranges of  bulk concentrations, we use two 
approaches. For  small values of ~b~, we let y* represent the true thickness of the resuspended layer 
when a region of large gradient in concentration exists. Equation [47] then gives the velocity with 
which the top interface moves. In the second case, applicable when ~b, is large, y* no longer 
represents the thickness of the resuspended layer• Instead, it is an arbitrarily large number, which 
does not depend on x*, chosen to impose the boundary condition far from the wall ~b = ~b~ in much 
the same manner as a large value of L, was chosen for the upper boundary in the linearized 
problem. We also expect that in the intermediate range of concentrations we may solve the problem 
by either assumption and the two results should be comparable. 

We impose the boundary conditions $ = q~m -- Cb at r/ = 0 and ~b = qb~ - Et at r/ = 1. The initial 
condition in the downwelling region is obtained by substituting x* = 0 in the mass-conservation 
equation [43] and solving the nonlinear equation which is now a function of q alone. Equation [47] 
gives f~', the velocity with which the bottom moves. This is the variable introduced in [44] as a 
result of  our earlier transformation of variables. In order to satisfy the pseudo-steady-state 
assumption, we must impose the additional restriction that the top and bottom boundaries 
move at the same velocity. This is readily achieved by adjusting the thickness of  the resuspended 
layer y* .  The initial concentration profile is solved by a shooting technique starting with an initial 
guess for the variables y~' and a~b/ar/ at r / =  0, which are iteratively improved by applying the 
Newton-Raphson method to satisfy the boundary condition at r /=  1 and the requirement that 
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the bottom and top boundaries move at the same velocity. As we have already demonstrated in 
the case of the linear problem in the earlier section, we make use of the condition that the 
concentration distribution ~b(x*, ~/) is independent of x* as x*---,0. 

The complete concentration profile ~(x*,~/) is solved from the initial conditions in the 
downflow region x* = 0 up to the upflow region x* = ~t by discretizing the concentration profile 
on a uniform grid in t? space. The concentration vector representing the concentration values 
at the various grid positions is augmented by the additional variable y~' and integrated from 
x* = 0 as an implicit set of differential and algebraic equations (DAEs) using the DASSL Fortran 
code for solving DAE models. We obtain the integrated average flux at the bottom in terms of 
the net integrated erosion/deposition of the bottom packed layer for various values of ~b~ as a 
function of the parameter S ~/3, as shown in figure 10. When S is small (corresponding to the 
case of weak convection in the resuspended layer), we have a net deposition of particles on 
the bottom bed as a result of downward settling of particles from infinity impressed upon the 
resuspended particle layer. The net deposition due to this downward settling of particles from 
infinity remains almost unchanged by increasing values of S up to S ~/3 ~ 1. At higher values of S, 
we observe a small transition region characterized by rapidly decreasing bed deposition rates. 
This reduction in bed deposition rates is due to an increasing fraction of the downward 
settling of particles which are able to escape the resuspended layer with increasing strength of the 
turbulent eddies. With increasing S and finite ~bo~, the erosion of the bed eventually overcomes 
the sedimentation from outside the layer and the net deposition rate becomes negative. For 
large values of S, the change in the net bed deposition rate with S ~/3 asymptotically approaches 
a straight line. The slope of this line for large values of S is identical for various values of 
~b~. Hence, the incremental flux as a result of any given change in the parameter S becomes 
proportional to the change in S 1/3. This scaling for the net deposition rate, valid for large 
values of S, is similar to the linearized problem examined in the earlier section. As before, this 
limiting net deposition rate (which is analogous to the dimensionless mass flux) is independent 
of gravity driven sedimentation and is the result of a balance between diffusive and convective 
terms. 

l "y~ dx* 
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Figure 10. Plot of  the dimensionless net mot ion of  the bot tom layer of  particles when ~b~ = 0 to 0.21 as 
a function of  the dimensionless parameter  S 1/3. Note that  for large S, the dimensionless net motion 

asymptotes to a straight line. 
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6. C O M P A R I S O N  W I T H  E X P E R I M E N T A L  R E S U L T S  

We are not aware of any experiments which determine the point at which particles are first ejected 
from the viscous sublayer into the turbulent core. Essentially, this would correspond to the point 
where significant bed erosion occurs since the thin viscous sublayer has a very limited capacity for 
sediment transport. We can, however, compare our theoretical prediction to the Shields criterion 
for first motion of a settled bed and to the minimum transport friction velocity for the complete 
resuspension of a settled layer, which is done in figure 11. 

The Shields criterion for the onset of particle motion reported by Yalin & Karahan (1979) (valid 
when the particle Reynolds number is approximately less than unity) is 

0.2 
@or - (Re~-)0.13" [49] 

This correlation is tested with experimental data up to the lowest reported particle Reynolds 
number of about 0.04. The correlation suggests the critical Shields parameter becomes infinite as 
Re;-*0, thus requiring an infinite shear stress to move the bed at zero Reynolds number. 
At sufficiently low particle Reynolds numbers, however, we expect the first motion to occur when 
viscous forces (which scale with ~o a2) balance gravitational forces; e.g. when the Shields parameter 
equals some constant. Thus, it is physically more realistic to expect the critical Shields parameter 
to asymptotically approach this constant value as Re~ -*0. In the viscous resuspension experiments, 
Leighton & Acrivos (1986) observed the first motion of a settled bed at low Reynolds number 
( ~  0.02) to occur at @ = 0.5. This value is quite close to the critical Shields parameter reported 
by Yalin & Karahan (1979) at the lowest particle Reynolds number reported in that study. 
The Shields criterion given by [49] can be expressed as 

u~ ~ 0.55(Re~ )i.3. [50] 
u .  

Equation [50] is shown as the dashed line (top left) in figure 11. 
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Figure 11. Comparison of the results of viscous resuspension with Shields criteria for the first motion of 
the settled bed and the minimum transport velocity. The inertial lift mechanism becomes dominant when 

Re;  > ~ 1. 
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The minimum transport velocity is the empirically determined friction velocity at which the 
particles first begin to settle out at the walls of  a pipe and form a sliding sediment layer. The limiting 
value of this minimum transport velocity for suspensions at low concentrations was found by 
Thomas (1961) to be 

u--L >I 0.0084 (Re~-) zS, [51] 
U ,  

which is also plotted (bottom line) in figure 11. Note that a sliding sediment layer will form for 
all conditions above and to the left of this line. 

The leftmost line in the middle of figure 11 is the point where we predict particles will be first 
ejected from the viscous sublayer into the turbulent core. This corresponds to the case when S is 
greater than the critical value Scr ~ 5, which is equivalent to 

Us 
- -  ~< 0.05 (Re~) 4/3. [52] 
U ,  

Balancing the inertial lift experienced by a particle sitting on a plane in the presence of uniform 
shear flow (Leighton & Acrivos 1985) with the net gravitational force acting on the particle, we 
obtain the rightmost line shown in the middle of the figure 11 from the inequality 

u s  ~< 0.061 (Re~-) 3. [53] 
U ,  

The two lines in the middle intersect at Re~- ~ 0.9. As expected, viscous resuspension effects will 
dominate when Re~- < ,-~ 1. This condition can be expressed in terms of the fluid properties and 
particle size: 

a 3 Apgp 
/~-----T-- < 0.091. [54] 

For the case of turbulent resuspension of river bed sediments, for example, from [54] we estimate 
that viscous effects will be important when dp < 42 # m. We have assumed the properties of water 
with p = 1.0 g/cm 3, Ap = 1.0 g/cm 3 and # = 1 cP. This is considerably smaller than the character- 
istic diameter of river sediment, thus it is unlikely that shear-induced migration plays an important 
role for the turbulent resuspension of such sediments. For larger viscosities and a smaller density 
difference, the transition occurs for much larger particles. For a suspension of acrylic particles in 
ethylene glycol, for example (p = 1.11 g/cm 3, Ap --- 0.07 g/cm 3 and/~ = 20 cP), the critical diameter 
increases to dp= 720 #m. There may be other systems ( a coal-oil slurry, for example, or drilling 
muds) where the characteristic particle size is small enough or the fluid viscosity is high enough 
that viscous effects will dominate resuspension. 

Our prediction, with no adjustable parameters, as shown in figure 11, falls midway between the 
first motion criterion and the complete resuspension condition for small particle Reynolds numbers, 
as would be expected if the theory were valid. This qualitative agreement between the theory and 
the experiment provides strong evidence that the resuspension of particles at low Reynolds numbers 
in the near-wall region is influenced by the shear-induced migration processes described in the 
model given here. A more detailed description of turbulent resuspension in this parameter regime 
requires a more sophisticated model of near-wall turbulence and the inclusion of transient 
phenomena. Such analysis is left to future work. 
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